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Boundary conditions for rapid granular flows : 
phase interfaces 

By J. T. JENKINS A N D  E. ASKARI 
Department of Theoretical & Applied Mechanics, Cornell University, Ithaca, NY 14853, USA 

(Received 31 October 1989 and in revised form 14 Ju ly  1990) 

We consider the region of agitated grains that is a t  rest in the neighbourhood of its 
interface with a dense granular flow. We suppose that this region can be modelled as 
an amorphous solid of nearly elastic spheres in which both momentum and energy 
are transferred and energy is dissipated in collisions. Making rather rough 
assumptions about the collision probability, we calculate the stress and energy flux 
in the solid and use their continuity a t  the interface to obtain boundary conditions 
on the flow. We employ them with existing kinetic theory for nearly elastic spheres 
to solve boundary-value problems for shearing between two such interfaces and 
between such an interface and a flat plate to which spheres have been rigidly 
attached. For the latter, we compare the predictions of the theory with the results 
of experiments. 

1. Introduction 
Rapid flows of granular materials commonly occur in natural phenomena such as 

rock slides, debris flows, granular snow avalanches and underwater sediment slumps, 
and in industrial processes involving the rapid transport of bulk materials, for 
example, coal, ore, cereals, and pharmaceuticals. The common features in these 
diverse flows is that  the grains interact with each other through collisions and that 
these collisions are responsible for the transfer of momentum and the transfcr and 
dissipation of energy in the flow. Momentum and energy are supplied to  a flow by 
gravity and by shear and normal forces applied a t  its boundaries. The interest, of 
course, is in predicting the relationship between the forces applied to a flow and its 
speed and extent. 

Progress in this direction has recently been made for steady shearing flows of 
idealized materials maintained by the rclative motion of equally idealized 
boundarics. Hanes, Jenkins and Richman (1988) study plane flows of dense 
collections of identical, smooth, nearly elastic circular disks driven by the relative 
motion of boundaries that consist of flat walls to which similar disks have been 
attached. They employ the balance laws and constitutive relations derived by 
Jenkins & Richman (1985) governing the fields of mean density, mean velocity and 
mean fluctuation energy, together with Richman & Chou's (1988) improvement of 
boundary conditions derived by Jenkins & Richman (1986) to  solve the boundary- 
value problem for steady, inhomogeneous shearing between identical boundaries. 

These solutions provide relations between the tangential and normal components 
of the traction applied to  the boundaries, the distance between them, and their 
relative velocity. Numerical simulations of such shearing flows by Louge, Jenkins & 
Hopkins (1989) indicate that the predicted rclations are very close to those measured 
in the simulations. In  an Appendix, Hanes et al. (1988) sketch the derivation of the 



498 J .  T. Jenkins und &. AsEuri 

corresponding results for spheres. ,Jenkins & Askari (1990) show that the predictions 
for spheres are relative close to the experimental data of Craig, Buckholz & Domoto 
(1986) for the steady shear of steel spheres in an annular shear cell with carefully 
prepared upper and lower boundaries. 

The success of the theory for steady shearing flows between boundaries to which 
the particles are rigidly attarhcd. encourages u s  to extend it to other types of 
boundaries. Here we consider a dense aggregate of identical smooth spheres and focus 
on thc interface bctwcen spheres that are being sheared and spheres that are, in 
mean, a t  rcst. Lye treat this interfaw as the boundary between a dense gas and an 
amorphous solid. In the solid the velocity fluctuations persist, a t  least for some 
distance from the interface. but the density is too high to allow flow. Collisions 
between grains permit the transfer of momentum and a shcar stress can be 
supported. provided that the radial distribution function for a colliding pair is 
anisotropic. 

A t  the interface. particles may be incorporated into the flow ; consequently, the 
mean velocity relative to the interface is zero. In the absence of slip. the energy flux 
at the interface is continuous. These are, cssentially, the boundary conditions that 
are required. We cmploy them with the field equations to solve two boundary-value 
problems for steady shear flow. In the first, the shearing is maintained by the relative 
motion of two phase interfaces. This is a shear band in which collisions alone 
determine the thickness and mechanical bchaviour. In the second. the material is 
sheared between a phase interface and a flat wall to which spheres are attached. This 
corresponds to those annular shcar cell experiments of Hanes & Inman (1985) in 
which only the upper portion of the granular material was  sheared. In each case we 
determine the relationships between the normal and tangential tractions applied to 
the boundaries. thc distance bctwecn them. and their relative velocity. 

Wc> should emphasize that we considcr only smooth spheres. Friction could be 
included in collisions between particlcs as i t  is, for example, in Jenkins’ (1990) 
treatment of frictional spheres intc~acting with a flat frictional wall. At phase 
interfaces, friction in enduring contacts between particales may also bc important. 
Johnson & Jackson (1987), for examplc,. assume that a t  such an interface some 
particles are sliding and some particles arc’ colliding. The tangential and normal 
trac+,ions of the sliding particles are related by a Coulomb yield condition. Here, in 
thc absence of any information regarding thc relative importance of the various 
mechanisms for the transfer of momentum and energy a t  a phase interface, we 
propose and explore a model for what is probably the simplest of them. 

2. Field equations 
We consider rapid flows of a granular material consisting of identical smooth 

spheres of mass n/ and diameter cr. A coefficient of restitution, e ,  characterizes the 
energy lost when two spheres collidc. M’e restrict our attention to nearly elastic 
collisions and employ standard results from kinetic theory (Chapman & Cowling 
1970, chap. 16) slightly modified to include the collisional dissipation. The mean 
fields of interest are the mass density p. the product of m and the mean number n of 
spheres p c ~  unit volume ; the mean velocity u ,  about which the actual particle 
velocities fluctuate; and the granular temperature T, which measures the energy per 
unit mass of the velocity fluctuations. 
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The balance laws for these have the familiar local forms: 

p+pv.u = 0, 

where an overdot indicates a time derivative following the mean motion ; 

pu = -V- P-knF, (2) 

$T= -V.Q-tr(P-Vu)-y,  (3) 

where P is the symmetric pressure tensor and F is the external force on a sphere ; and 

where Q is the flux of fluctuation energy and y is its rate of dissipation per unit 
volume in the inelastic collisions. 

We focus attention on steady rectilinear flows in the (2, y)-plane in which the x- 
component u of the velocity, the density p,  and the granular temperature T depend 
only on y. In this event, ( 1 )  is satisfied identically and, if external forces are assumed 
to  be absent, the x- and y-components of (2) require that the shear stress S = - Pz, 
and the normal stress N = P,, be constant. Then, with Q = Q,, (3) reduces to 

&'-Xu'+ y = 0, (4) 

where a prime denotes differentiation with respect to y. 
The constitutive theory is based upon the assumption of binary collisions and 

Enskog's extension of the assumption of molecular chaos to  dense systems. That is, 
the probability of a collision between a pair of spheres is assumed to be the product 
of thc velocity distribution functions of each sphere, evaluated a t  its centre, and the 
radial distribution function for spheres in thermal equilibrium, evaluated a t  the 
midpoint of the line of centres of a colliding pair. Numerical simulations show that 
this value, go, of the radial distribution function depends upon the solid volume 
fraction u = ; the observed dependence is well fitted by a function proposed by 
Carnahan & Starling (1969) : 

2-u 
go(4 = ~ 

( l - u ) 3 '  

Here we restrict our attention to  dense flows. In  this case, the contributions from 
particle transport to the fluxes of momentum and energy are negligible. In  addition, 
we retain only those contributions to the collisional fluxes that dominate in the dense 
limit. If we ignore any complications arising from correlated collisions a t  these 
densities (e.g. Dorfman & Kirkpatrick 1986), the normal stress and the shear stress 
may be written as the high-volume-fraction limits of expressions provided by 
Chapman & Cowling (1970, $16.41): 

N = &K f i / g ,  (6) 
where K = (4/7ct)p(r@G 

with (2 = ug,,, and S = SJKu', 

where J = 1 +&n. Upon eliminating K between (6) and (8), we obtain a simple 
relation between the velocity gradient and the temperature : 

Similarly, the energy flux (Chapman & Cowling 1970, $16.42) is, in the limit, given 

Q = -&fKT', (10) 
by 
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where M = 1 + A x .  The dissipation rate per unit volume is (Jenkins & Savage 1983) 

y = 61c( 1 - e )  T / a 2 .  (11)  

We employ (9), (lo), and (11)  in the energy balance (4) and replace K by aN/(xT)$  
wherever it occurs. The resulting equation, written in terms of w = @, is 

IT~W"- k2W = 0, (12) 

where k2 [3( 1 - e )  - ( 5 7 ~ / 4 J )  ( S / N ) 2 ] / M .  (13) 

When k is real, the solution of (12) involves hyperbolic functions; when k is 
imaginary, i t  involves trigonometric functions. However, such steady solutions are 
possible only if the boundary conditions permit them (see e.g. Jenkins & Richman 
1986 and Hanes et al. 1988). 

3. Phase interfaces 
Often bounding such a rapid flow is a region in which the mean velocity vanishes 

but collisions between particles may persist, at least for some distance away from the 
flow. In  this region the fluctuation energy supplied a t  the interface on which the 
mean velocity vanishes is conducted away from this surface, dissipated in collisions, 
and eventually disappears. 

We suppose t h a t  in the region in which the mean flow vanishes but the collisions 
persist, the material has the structure of an amorphous, or glassy, solid. This is 
consistent with the observation of a glass transition a t  v = 0.57 in numerical 
simulations of elastic spheres (Woodcock 1981). In the solid, the volume fraction is 
too high to permit flow, but the stress continues to result from the transfer of 
momentum in collisions. However, the shear stress is due to an anisotropy in the 
radial distribution function induced by the distortion of the solid, rather than to the 
anisotropy in the velocity distribution functions associated with the velocity 
gradients. 

In  the solid, the modified radial distribution function, g,  for a colliding pair may 
be written in terms of a deviatoric tensor e that characterizes the anisotropy and the 
unit vector k along the line of centres: 

(14) 

If we make the crude assumptions that molecular chaos prevails in the solid and 
the single-particle velocity distribution function is nearly Maxwellian, the consti- 
tutive relations may be obtained from the results of an analogous calculation by 
Jenkins & Savage (1983) that involves a radial distribution function distorted by the 
flow. The expressions for the normal stress and volume dissipation rate are, 
respectively, identical to (6) and ( l l ) ,  the energy flux is given by (lo),  and 

g = go( 1 - ki eii kj). 

S = ZNe,,. (15) 

Then, because the mean velocity vanishes in the glassy solid, w there is a solution 
of 

a2w"-[3(1-e)/Mlw = 0. (16) 

Solving this in the half-space y < 0 and discarding the unbounded part of the 
solution, we find that 

(17)  w = wo exp {[3( 1 - e)]4J/M4T), 
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where wo is the value of w a t  the interface. So, for nearly elastic spheres, the glassy 
solid has a thickness of several particle diameters. Within this layer v must increase 
away from the interface in order to maintain constant S and N as the fluctuations 
diminish. Finally, the volume fraction becomes sufficiently high that the collisional 
momentum supplied to a particle over one portion of its surface is balanced by forces 
transmitted through enduring contacts over the other. 

By our definition of the interface, the mean velocity of the flow relative to i t  
vanishes; this is the boundary condition for (9). At the interface the fluctuation 
energy is continuous and, in the absence of a rate of working associated with a slip 
velocity, so is the energy flux. Consequently, the energy flux in the flow at the 
interface is, upon differentiating (17) and employing (lo),  

The corresponding condition on the solution of (12) is 

The fluctuation energy is continuous across the interface; so, in order to  provide 
continuity of the normal traction, the solid volume fraction must also be continuous. 
Finally, a t  the interface the strain in the glassy solid must adjust to  provide 
continuity of the tangential traction. 

4. Shear bands 
Shear bands are localized regions of intense shearing in granular materials. We 

investigate the possibility that at some stage in the development of such a band, the 
forces on either side of it are transmitted across it by collisions between particles. In  
order to study the thickness of the band and how the components of the transmitted 
force may be related to its motion, we consider the steady shearing flow established 
between two parallel phase interfaces separated by a distance L and moving relative 
to  each other with a constant velocity 2U. Here it is convenient to take the origin 
midway between the interfaces and to  translate so that the interfaces move with the 
same speed U in opposite directions. 

Symmetry then requires that w’(0) = 0, so the solution of (12) is 

cosh ( k y / a )  
cosh (kL/Za) ’ 

w = wo 

where here w,, = w(--V,). Applying the boundary condition (19) at y = -$5, we 
obtain 

When k is real, this has no real solution for L. Consequently, for steady solutions to 
exist, it is necessary that 

(22) 
( 5 x / 4 J )  (S/N)2-3(1-e) K2 = > 0. 

M 
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[5n/ 12.4 I - e)]l S /  N 

FIGURE 1. Normalized band thickness versus normalized stress ratio. 

In this case, with k = iK, equation (21) becomes 

[3( 1 - e ) ] ;  

This determines L / a  as a function of K or, equivalently (1 - e)iL/a as a function of 
[57~/12J(I-e)]%'/N. The graph of this relationship is given in figure 1 for the 
principal value of the argument. Determinations for other than the principal value 
lead to negative temperatures in the flow and must be discarded. The vertical 
asymptote corresponds to a homogeneous shearing with a linear velocity profile and 
uniform fluctuation energy and volume fraction. As the stress ratio increases, the 
thickness of the band decreases. 

With (20) written in terms of K and the symmetry condition u(0) = 0, the solution 
of (9) for the mean velocity is 

u 5hS sin(Ky/u) 
w,, 2 J  NKcos(KLI2a)' 
_ -  _ _  - (24) 

As a consequence of there being no slip on the interface, we have u( -iL) = - U .  
Hence 

u 57~; S tan (KL/2u), 
wo 2 J N  K ' (25) _ -  _ _  - 

or, with (23), 
U - 5 d  S [3( 1 - e ) ] ;  
w,, 2 J N  K2Mi 

- -- - 

With (22), this may be written as a quadratic equation for the stress ratio that, when 
solved, yields 

4 J  
N 
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FIGURE 2. Normalized stress ratio versus normalized boundary velocity. 

The graph of U/wo versus [5x/12J(l-e)]k'/N is given in figure 2. Here the 
horizontal asymptote corresponds to  homogeneous shearing. The stress ratio is a 
monotonic decreasing function of normalized relative velocity. 

Finally, using (6), we have W E  = N/4p0 Go, where po = 6mv0/xa3. This permits the 
stress ratio to be expressed as a function of the boundary velocity, the normal 
traction, the mass and diameter of the spheres, and the solid volume fraction a t  the 
phase interface. The numerical simulations of Woodcock (1981) suggest that  the 
value of v, is between 0.57 and 0.64. 

5. Depth of shear 
We next consider steady shearing flow between a moving plate with a bumpy 

surface and a phase interface. We are particularly interested in the depth of material 
that  participates in the flow. We suppose that the plate is made bumpy by randomly 
affixing to it spheres of diameter d with a mean spacing s between their nearest 
points. Boundary conditions at such a boundary have been given by Jenkins (1987) 
and Richman (1988) with the same accuracy as the constitutive relations (6)-( 11).  
Hanes et al. (1988) employ them to study the steady symmetric shearing of identical 
spheres between two identical boundaries that are in relative motion. Our flow is 
asymmetric, so we take the phase interface to be a t  y = 0 with the bumpy boundary 
at y = L moving parallel to  it with velocity 2U in the x-direction. 

At y =  L,  the rate, M ,  a t  which momentum is supplied to the flow through 
collisions over a unit area of the wall has components 

M ,  = -pxw;, (28) 

where x is a function of the solid fraction that accounts for the effects of particle 
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shielding and excluded area on the frequency of boundary collisions, and w1 = w(L) ; 
and 

where v = 2U--u(L) is the slip velocity, @ = g(d+a), and sin0 = ( d + s ) / ( d + a ) .  

first of these used with (28) gives 

The second may be rewritten by first employing (9) and (30) to eliminate, 
respectively, u' and x from the expression (29) for M,. Then, upon solving for v/wl 
we obtain 

Balance of momentum at the boundary requires that -My = N and M, = S. The 

N = pxw?. (30) 

where 

(32) 
3sin20{l-(52/2/4J) (@/g) [1+(~/121/2)  (cr/a)sin20]} 5 a +-- 

J d 2  IT. 2(2 - 3 cos e+ cOs30) fl = 

The rate, D, of collisional dissipation per unit area of the boundary is 

D = (2/7c)i 2px( 1 - E )  w3( 1 - cos 0) cosec2 0,  (33) 
where E is the coefficient of restitution of a collision between a flow sphere and a wall 
sphere. Balance of energy at  the wall requires that Sv-D = Q. In this we use the 
constitutive relation (10) for Q and equation (31) for v/w1. Upon replacing K by 
aN/7c~wl in the result, we obtain 

where 
ITW'IW~ = b,, (34) 

(35) 
[2(1--~) (1-cos0) cosec20-(i7cjl) b = -  

M d 2  
1 -  

At the phase interface, y = 0, the boundary conditions are 

v = o  (36) 

and ITW'/W, = - b,, (37) 

b, = - [3( 1 - e ) / k @ .  (38) 

When k is real, the homogeneous equation (12) has a solution that satisfies the 

where w, = w(0) and, from (19), 

homogeneous boundary conditions (34) and (37) only if 

t a n h ( 5 )  = (b,  + bl)  k 
b ,b l+k2  ' 

When K = -ik is real, the corresponding condition is 

(b,+bl)K tan ~ = (?) bob,-K2 ' 

(39) 

I n  figure 3 we plot the relationship between L / a  and SIN for values of e, E ,  a, and 
13 corresponding to our best estimates of these in the experiments of Hanes & Inman 
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FIGURE 3. Normalized depth of shear versus normalized stress ratio and the data of 
Hanes & Inman ( + ). d = CT, s / d  = 0.75, e = 0.925 and yo = 0.06. 

(1985). To the left of the vertical dashed line k is real, fluctuation energy is dissipated 
in the interior, and the solution of (12) is a linear combination of sinh (k:y/a) and 
cosh (ky/cT). At the intercept with the vertical dashed line k = 0 and the profile of w 
is linear. To the right of the vertical dashed line K is real, fluctuation energy is 
produced in the interior, and the solution of (12) is a linear combination of sin ( K y / u )  
and cos (Kyla) .  When b,  is negative, the curves for K real terminate at L/v = x/2K 
as b, b, approaches K 2 .  As w varies across the thickness, the volume fraction must 
compensate in order to maintain a constant normal stress. In  some situations, the 
change in volume fraction across the cell may be so great as to invalidate our 
restriction to dense flows. I n  this case we anticipate that our analysis captures most 
of the features of the more complicated problem. We note that the numerical 
simulations of Louge et al. (1989) indicate that the corresponding theory for plane 
flow of disks between identical bumpy boundaries applies to gaps as small as three 
diameters in width. 

The points shown in figure 3 are data from Hanes & Inman (1985) for 1.1 mm glass 
spheres a t  volume fractions of 0.60 rapidly sheared through a part L of the depth of 
an annular cell with boundaries to  which 1.1 mm glass spheres had been affixed. Only 
data for runs in which the weight of the material was a small fraction of the normal 
force on the upper boundary are shown. These data should all fall upon a single 
curve. There is scatter, but the data do seem to exhibit the same trend as the 
predictions. However, a t  a fixed value of L/u, the predicted value of SIN is too low. 
We defer consideration of the reasons for this until after we have introduced a second 
parameterization of the problem. 

When (39) is satisfied and a steady solution for w exists, its boundary values are 
related bv 
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FIQLJKE 4. Normalized stress ratio versus normalized boundary velocity and the data  of 
Hanes & Inman (+ ) .  Same parameters as in figure 3. 

When (40) is satisfied, the corresponding condition is obtained by using k = iK in 
(41). 

The second parameterization may be obtained by integrating (9) for the velocity. 
When this is done, the boundary conditions (31) and (36) are employed, and (39) and 
(41) are used to simplify the result, we obtain a relation between the boundary 
velocity and the stress ratio: 

After using (13), (32), (35), and (38) to make the dependence upon stress ratio, 
roughness, and the coefficients explicit and writing wo = (N/4poGo)t ,  we plot this 
relation in figure 4 for the same values of e ,  c,  a, and 0 as in figure 3. We see that the 
stress ratio is a monotone decreasing function of normalized boundary velocity and, 
when fluctuation energy is being consumed in the interior and provided by the 
bumpy boundary, the stress ratio is less than its value in homogeneous shear. The 
points are the same data employed in figure 3. Again the data seem to exhibit the 
trend of the predictions, but the observed values of the stress ratio are higher than 
predicted. 

As discussed by Jenkins & Askari (1990), the experimental system differs from 
that upon which the predictions are based in two important respects, the presence of 
sidewalls and the existence of friction. In  the experiments, the bottom plate, 
including the sidewalls, rotates. Consequently, the mean velocity of particles near the 
wall is different from those in the centre, and the shear stress applied to the top of 
the cell must balance the additional momentum input from the sidewalls. Also, there 
is friction a t  the sidewalls and between particles, so there is an additional source of 
dissipation in the shear cell. Consequently, in the experiments higher shear stresses 
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than predicted are required to produce the velocity fluctuations corresponding to a 
given normal stress. This is seen in the numcvical simulations of simple shear in dense 
collections of frictional spheres by Walton (1990). For experiments in a cell 40 
diameters wide these additional contributions to the shear stress are expected to be 
small but not negligible. If the experimental points are shifted to the left in figure 3 
and down in figure 4 to correct for these differences between theory and experiment, 
the agreement can be made far more striking. 

We must say that wc have encountered difficulties in applying the theory for 
identical bumpy boundaries to the data of Hancs & Inman (1985) for dense 
aggregates that are sheared throughout their depth. Their several data points for 
1 . 1  mm spheres a t  high volume fraction that arc not influcmced by gravity involve 
stress ratios that are about twice that predicted for the values of e ,  d,  s, and E used 
here. If we were to put our faith in thc theories, the indication is that there were 
problems with the bottom boundary in the experiment. For example, the attached 
spheres may havc been partially buricd in glass dust. 

In  any case, we believe that we havc provided a context in which granular flows 
bounded by regions of grains at rest may bc placed. We look forward to additional 
physical experiments and numcrical simulations that will highlight its deficiencies 
and suggest its improvement. 

This work was partially supported by the US Army through the Mathematical 
Sciences Institute a t  Cornell University. 
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